Northeastern University

Page Content   Main Links   Local Links   Utility Links   Footer Links

Chemical Engineering

Hicham Fenniri

Professor & Associate Chair of Graduate Studies
Department of Chemical Engineering

Office: 253 SN
Phone: 617.373-7690
h.fenniri@neu.edu

Education:

  • B.S. (Chemistry and Biochemistry) Université Louis Pasteur, 1989
  • M.Sc (Supramolecular Organic Chemistry) Université Louis Pasteur, 1990
  • Ph.D. (Supramolecular Sciences and Engineering) Université Louis Pasteur, 1994

Expertise:

  • Supramolecular Engineering
  • Nanostructured functional materials
  • Theranostics

Research Focus/Background:

The supramolecular nanoscale assembly group is a multidisciplinary team of scientists, engineers and technical staff dedicated to understanding the underlying concepts of molecular recognition, self-assembly and self-organization processes, and utilizing this knowledge to advance the health and medical technologies, energy and environment, information and communication technologies, and nanomaterials sectors.

The mission of our group is to (a) harness the properties and architecture of matter from the ground up through supramolecular synthesis, self-assembly and self-organization, (b) create new materials for application in sustainable energy generation, catalysis, nanoelectronics, and nanomedicine, (c) develop new technology platforms to address significant public health problems and meet current technological challenges, (d) train highly qualified graduate students, postdoctoral fellows and technical staff.

Our group focuses specifically on the development of a variety of nanomaterials (organic nanotubes, metal nanoparticles, nanocrystalline cellulose) for applications as: (a) adaptable scaffolds for drug display/delivery, in particular for cancer, lung inflammation, and bone therapy; (b) coatings for optimal medical device integration in living systems; (c) electroactive and photoactive components for organic photovoltaics and nanoelectronics; (d) catalysts; (e) platforms for ultradetection; (f) components in composite materials.

In the context of these investigations, we explore the fundamentals of self-assembly and self-organization processes, to advance the design of materials with predefined dimensions and physical properties, and explore commercialization opportunities in the nanomedical device arena.

Selected Publications:

  • Deng, B. L.; Beingessner, R. L.; Johnson, R. S.; Girdhar, N. K.; Danumah, C.; Yamazaki, T.; Fenniri, H. Covalent Capture of Self-Assembled Rosette Nanotubes. Macromolecules 2012, 45, 7157–7162.
  • Yamazaki, T.; Fenniri, H., Imaging Carbon Nanotube Interaction with Nucleobases in Water Using the Statistical Mechanical Theory of Molecular Liquids. J. Phys. Chem. C 2012, 116, 15087-15092.
  • Sun, L.; Zhang, L.; Hemraz, U. D.; Fenniri, H.; Webster, T. J. Bioactive Rosette Nanotube-Hydroxyapatite Nanocomposites Improve Osteoblast Functions. Tissue Eng. A 2012, 1741–1750.
  • Alsbaiee, A.; St. Jules, M.; Beingessner, R. L.; Cho, J.-Y.; Yamazaki, T.; Fenniri, H., Synthesis of Rhenium Chelated MAG3 Functionalized Rosette Nanotubes. Tetrahedron Lett. 2012, 53, 1645-1651.
  • Suri, S. S.; Mills, S.; Aulakh, G. K.; Rakotondradani, F.; Fenniri, H.; Singh, B., RGD-Tagged Helical Rosette Nanotubes Aggravate Acute Lipopolysaccharide-Induced Lung Inflammation. Int. J. Nanomed. 2011, 6, 3113–3123.
  • Chen, Y.; Song, S.; Yan, Z.; Fenniri, H.; Webster, T. J., Self-Assembled Rosette Nanotubes Encapsulate and Slowly Release Dexamethasone. Int. J. Nanomed. 2011, 6, 1035–1044.
  • Beingessner, L. R.; Diaz, J.; Hemraz, U. D.; Fenniri, H., Synthesis of a β-Glycoside Functionalized GΛC Motif for Self-Assembly into Rosette nanotubes with Predefined Length. Tetrahedron Let. 2011, 52, 661–664.
  • Song, S.; Chen, Y.; Yan, Z.; Fenniri, H.; Webster, T. J., Self-Assembled Rosette Nanotubes for Incorporating Hydrophobic Drugs in Physiological Environments. Int. J. Nanomed. 2011, 6, 101–107.
  • Le Minh, H. A.; Rakotondradany, F.; Fenniri, H.; Singh, B., Rosette Nanotubes Inhibit Bovine Neutrophils Chemotaxis. Veterinary Res. 2010, 41,75–86.
  • Borzsonyi, G.; Beingessner, R. L.; Yamazaki, T.; Cho, J.-Y.; Myles, A. J.; Malac, M.; Egerton, R.; Kawasaki, M.; Ishizuka, K.; Kovalenko, A.; Fenniri, H. Water-Soluble J-Type Rosette Nanotubes with Giant Molar Ellipticity. J. Am. Chem. Soc. 2010, 132, 15136–15139.
  • Borzsonyi, G.; Alsbaiee, A.; Beingessner, R. L.; Fenniri, H., Synthesis of a Tetracyclic GΛC Scaffold for the Assembly of Rosette Nanotubes with 1.7 nm Inner Diameter. J. Org. Chem. 2010, 75, 7233-7239.
  • Cho, J.-Y., Fenniri, H., Microscopic Imaging of Rosette Nanotubes, Imaging & Microscopy 2010, 4, 33–35.
  • Zhang, L.; Hemraz, U. D.; Fenniri, H.; Webster, T. J., Tuning Cell Adhesion on Titanium using Osteogenic Rosette Nanotubes. J. Biomed. Mater. Res. Part A 2010, 95A, 550-563.
  • Borzsonyi, G.; Johnson, R. S.; Myles, A. J.; Cho, J.-Y.; Yamazaki, T.; Beingessner, R. L.; Kovalenko, A.; Fenniri, H. Rosette Nanotubes with 1.4 nm Inner Diameter from a Tricyclic Variant of the Lehn-Mascal GΛC Base. Chem. Comm. 2010, 46, 6527-6529.
  • Chen, Y.; Pareta, R. A.; Bilgen, B.; Myles, A. J.; Fenniri, H.; Ciombor D. M.; Aaron, R. K.; Webster, T. J., Self-assembled Helical Rosette Nanotubes/Hydrogel Composites for Cartilage Tissue Engineering. Tissue Eng. Part C 2010, 16, 1233–1243.
  • Yamazaki, T.; Fenniri, H.; Kovalenko, A., Structural Water Drives Self-Assembly of Organic Rosette Nanotubes and Holds Host Atoms in the Channel. ChemPhysChem 2010, 11, 361–367.
  • Chhabra, R.; Moralez, J. G.; Raez, J.; Yamazaki, T.; Cho, J.-Y.; Myles, A. J.; Kovalenko, A.; Fenniri, H., One-Pot Nucleation, Growth, Morphogenesis, and Passivation of 1.4 nm Au Nanoparticles on Self-Assembled Rosette Nanotubes. J. Am. Chem. Soc. 2010, 132, 32–33.
  • Danumah, C.; Beingessner, R. L.; Haque, A.; Ban, F.; Richards, J. P.; Kovalenko, A.; Fenniri, H., Synthesis, Properties and Mechanistic Insight into the Self-Assembly of a Lamellar Fibrous Superstructure from a Synthetically Simple Discotic Molecule. Langmuir 2009, 25, 11857–11861.
  • Bravo-Vasquez, J.-P.; Fenniri, H., Single Molecule SERRS Detection Platforms Obtained via Galvanic Displacement on Silver Fractals. J. Phys. Chem. C 2009, 113, 12897–12900.
  • Borzsonyi, G.; Oderinde, M. S.; Beingessner, R. L.; Deng, B.-L.; Yamazaki, T.; McDonald, R.; Kovalenko, A.; Fenniri, H., Supramolecular Synthesis of Solid-State Tapes Through Molecular Facial Self-Recognition. Helv. Chim. Acta 2009, 92, 1963–1972.
  • Suri, S. A.; Rakotondradany, F.; Myles A. J.; Fenniri, H.; Singh, B., The Role of RGD-Tagged Rosette Nanotubes in the Induction of Inflammation and Apoptosis in Human Adenocarcinoma Cells Through p38 MAP Kinase. Biomaterials 2009, 30, 3084–3090.
  • Journeay, W. S.; Suri, S. S.; Moralez, J. G.; Fenniri, H.; Singh, B., Macrophage Inflammatory Response to Self-Assembling Rosette Nanotubes. Small 2009, 5, 1446–1452.
  • Farah, A. A.; Bravo-Vasquez, J.-P.; Alvarez-Puebla, R. A.; Cho, J.-Y.; Fenniri, H., Robust Au-PEG/PS Microbeads as Optically Stable Platforms for SERS. Small 2009, 5, 1283–1286.
  • Fine, E.; Zhang, L.; Fenniri, H.; Webster, T. J., Enhanced Endothelial Cell Functions on Helical Rosette Nanotubes Coated Titanium Vascular Stents. Int. J. Nanomed. 2009, 4, 91–97.
  • Borzsonyi, G.; Beingessner, R. L.; Fenniri, H., Synthetic Strategy Towards 1,9-Functionalized Pyrido[2,3-d:6,5-d’]dipyrimidine-2,4,6,8-tetrones. J. Heterocyclic Chem. 2009, 46, 79–83.
  • Alvarez-Puebla, R. A.; Bravo-Vasquez, J.-P.; Cheben, P.; Xu, D.-X.; Waldron, P.; Fenniri, H., SERS-Active Ag/Au Bimetallic Nanoalloys on Si/SiOx. J. Coll. Interf. Sci. 2009, 333, 237–241.
  • Zhang, L.; Rakotondradany, F.; Myles, A. J.; Fenniri, H.; Webster, T. J., RGD-Modified Rosette Nanotubes-Hydrogel Composites for Bone Tissue Engineering. Biomaterials 2009, 30, 1309–1320.

Local Links

Text Only Options

Top of page


Text Only Options

Open the original version of this page.

Usablenet Assistive is a UsableNet product. Usablenet Assistive Main Page.